管窥AI芯片国内外现状(之三)

前两篇文章:

芯青年:管窥AI芯片国内外现状(之一)芯青年:管窥AI芯片国内外现状(之二)

介绍了AI芯片国外的现状,和国内的情况,这一篇是我的一些感受和后面工作的方向。

从ISSCC2018看人工智能芯片发展趋势

在刚刚结束的计算机体系结构顶级会议ISSCC2018,“Digital Systems: Digital Architectures and Systems”分论坛xxByeong-Gyu Nam对人工智能芯片,特别是深度学习芯片的发展趋势做了概括。深度学习依然今年大会最为热门的话题。相比较于去年大多数论文都在讨论卷积神经网络的实现问题,今年则更加关注两个问题:其一,如果更高效地实现卷积神经网络,特别是针对手持终端等设备;其二,则是关于全连接的非卷积神经网络,如RNN和LSTM等。

同时,为了获得更高的能效比,越来越多的研究者把精力放在了低精度神经网络的设计和实现,如1bit的神经网络。这些新型技术,使得深度学习加速器的能效比从去年的几十TOPS/W提升到了今年的上百TOPS/W。有些研究者也对数字+模拟的混合信号处理实现方案进行了研究。对数据存取具有较高要求的全连接网络,有些研究者则借助3-D封装技术来获得更好的性能。

总结——对国产人工智能芯片的一点愚见

正如前文所述,在人工智能芯片领域,国外芯片巨头占据了绝大部分市场份额,不论是在合并等方面,都具有绝对的领先优势。而国内则又呈现百家争鸣、各自为政的纷乱局面;特别是每个初创企业的人工智能芯片都具有自己独特的体系结构和软件开发套件,既无法融入英伟达和谷歌建立的生态圈,又不具备与之抗衡的实力。

国产人工智能芯片的发展,一如早年间国产通用处理器和操作系统的发展,过份地追求完全独立、自主可控的怪圈,势必会如众多国产芯片一样逐渐退出历史舞台。借助于X86的完整生态,短短一年之内,兆芯推出的国产自主可控x86处理器,以及联想基于兆芯CPU设计生产的国产计算机、服务器就获得全国各地党政办公人员的高度认可,并在党政军办公、信息化等国家重点系统和工程中已获批量应用。

当然,投身于X86的生态圈对于通用桌面处理器和高端服务器芯片来说无可厚非,毕竟创造一个如Wintel一样的生态链已绝非易事,我们也不可能遇见第二个。而在全新的人工智能芯片领域,对众多国产芯片厂商来说,还有很大的发展空间,针对神经网络加速器最重要的就是找到一个具有广阔前景的应用领域,如华为海思麒麟处理器之于中科寒武纪的NPU;否则还是需要融入一个合适的生态圈。另外,目前大多数国产人工智能处理器都针对于神经网络计算进行加速,而能够提供单芯片解决方案的很少;微控制器领域的发展,ARM的Cortex-A系列和Cortex-M系列占据主角,但是新兴的开源指令集架构RISC-V也不容小觑,完全值得众多国产芯片厂商关注。

下载提示:

1、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“文章版权申述”(推荐),也可以打举报电话:18735597641(电话支持时间:9:00-18:30)。

2、网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。

3、本站所有内容均由合作方或网友投稿,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务。

原创文章,作者:写文章小能手,如若转载,请注明出处:https://www.447766.cn/chachong/131621.html,

Like (0)
写文章小能手的头像写文章小能手游客
Previous 2023年4月25日
Next 2023年4月26日

相关推荐

My title page contents